Formal equivalence of Poisson structures around Poisson submanifolds
نویسندگان
چکیده
منابع مشابه
Pre-poisson Submanifolds
In this note we consider an arbitrary submanifold C of a Poisson manifold P and ask whether it can be embedded coisotropically in some bigger submanifold of P . We define the classes of submanifolds relevant to the question (coisotropic, Poisson-Dirac, pre-Poisson ones), present an answer to the above question and consider the corresponding picture at the level of Lie groupoids, making concrete...
متن کاملDirac submanifolds and Poisson involutions
Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds i...
متن کاملFormal Poisson Cohomology of Twisted r–Matrix Induced Structures
Quadratic Poisson tensors of the Dufour-Haraki classification read as a sum of an r-matrix induced structure twisted by a (small) compatible exact quadratic tensor. An appropriate bigrading of the space of formal Poisson cochains then leads to a vertically positive double complex. The associated spectral sequence allows to compute the Poisson-Lichnerowicz cohomology of the considered tensors. W...
متن کاملPoisson geometry and Morita equivalence
2 Poisson geometry and some generalizations 3 2.1 Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Dirac structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Twisted structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Symplectic leaves and local structure of Poisson manifolds ...
متن کاملToric Poisson Structures
Let TC be a complex algebraic torus and let X(Σ) be a complete nonsingular toric variety for TC. In this paper, a real TCinvariant Poisson structure ΠΣ is constructed on the complex manifold X(Σ), the symplectic leaves of which are the TC-orbits in X(Σ). It is shown that each leaf admits an effective Hamiltonian action by a subtorus of the compact torus T ⊂ TC. However, the global action of TC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2012
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2012.255.439